Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bao-Feng Zhang, Cheng-Zhi Xie,
Xiao-Qing Wang,* Guang-Qiu
Shen and De-Zhong Shen

Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China

Correspondence e-mail:
xqwang@tsinghua.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.027$
$w R$ factor $=0.061$
Data-to-parameter ratio $=13.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Poly[[hexaaquabis (μ_{3}-pyridine-2,5-dicarboxylato$\left.\kappa^{4} O: O^{\prime}, N: O^{\prime \prime}\right)$ bis (μ_{2}-pyridine-2,5-dicarboxylato$\kappa^{3} O: O^{\prime}, N$)dieuropium(III)copper(II)] dihydrate]

The title polymeric compound, $\left\{\left[\mathrm{Eu}_{2} \mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]\right.$-$\left.2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, was prepared by a hydrothermal reaction at 453 K . The $\mathrm{Eu}^{\text {III }}$ ion has a double-capped trigonal prismatic coordination geometry with an NdNO_{7} core, while the $\mathrm{Cu}^{\text {II }}$ ion is located on an inversion center and assumes a squareplanar coordination geometry. The pyridine-2,5-dicarboxylate dianions bridge the $\mathrm{Eu}^{\mathrm{III}}$ and $\mathrm{Cu}^{\mathrm{II}}$ ions, forming a threedimensional polymeric structure.

Comment

Lanthanide-transition metal complexes are currently of great interest because they are good models to investigate the nature of the magnetic exchange interactions between $3 d$ and $4 f$ metal ions (Lisowski \& Starynowicz, 1999; Liang et al., 2000, 2001). As part of our ongoing investigation on magnetic complexes containing lanthanide and transition metal ions, we present here the structure of the title polymeric $E u^{\text {III }}-\mathrm{Cu}^{\mathrm{II}}$ complex, (I).

(I)

A segment of the three-dimensional polymeric structure of (I) is shown in Fig. 1. In the asymmetric unit there are one

Figure 1
A segment of the polymeric structure of (I), shown with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). Uncoordinated water molecules have been omitted for clarity. [Symmetry codes: (i) $1+x$, y, z; (ii) $1+x, \frac{3}{2}-y, \frac{1}{2}+z$; (iii) $2-x, 2-y, 3-z$.]
$\mathrm{Eu}^{\mathrm{III}}$ ion and one-half $\mathrm{Cu}^{\mathrm{II}}$ ion, located on an inversion center. The Eu ${ }^{\text {III }}$ ion has a double-capped trigonal prismatic coordination geometry with an NdNO_{7} core, involving three O atoms from three coordinated water molecules and four O atoms from four pyridine-2,5-dicarboxylate (pydc) dianions. The $\mathrm{Cu}^{\text {II }}$ ion is chelated by two pydc ligands through their N and O atoms with a square-planar geometry. The $\mathrm{Eu}-\mathrm{O}$ bonds range from 2.342 (3) to 2.435 (3) \AA (Table 1). There are two independent pydc dianions in (I). While the C1-containig pydc dianion adopts a tetradentate chelating-bridging mode and links three $\mathrm{Eu}^{\mathrm{III}}$ ions, the C 8 -containing pydc dianion adopts a tridentate chelating-bridging coordination mode and links one $\mathrm{Eu}^{\text {III }}$ and one $\mathrm{Cu}^{\mathrm{II}}$ ions. Thus, the pydc dianions link the Eu and Cu ions, forming a three-dimensional polymeric structure. The $\mathrm{Eu} \cdots \mathrm{Eu}$ and $\mathrm{Eu} \cdots \mathrm{Cu}$ separations between adjacent units are 6.406 (1) and 6.087 (3) \AA, respectively.

Extensive $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding occurs in the crystal structure of (I), and this stabilizes the crystal structure (Table 2).

Experimental

A mixture of $\mathrm{Eu}_{2} \mathrm{O}_{3}(0.25 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol})$, H_{2} pydc (1.0 mmol) and $\mathrm{H}_{2} \mathrm{O}(16.0 \mathrm{ml})$ was sealed in a 25 ml stainless steel reactor with a Teflon liner and heated directly to 453 K . After maintaining this temperature for 72 h , the reaction was cooled slowly to 303 K at a rate of $2 \mathrm{~K} \mathrm{~h}^{-1}$. Blue crystals were obtained in 52% yield. Analysis calculated for $\mathrm{C}_{28} \mathrm{H}_{28} \mathrm{CuEu}_{2} \mathrm{~N}_{4} \mathrm{O}_{24}$ (\%): C $28.67, \mathrm{H}$ 2.39, N 4.78; found: C 28.73, H 2.31, N 4.81 .

Crystal data

$\left[\mathrm{Eu}_{2} \mathrm{Cu}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{O}_{4}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=1172.00$
Monoclinic, $P 2_{1} / c$
$a=9.271$ (3) \AA 。
$b=25.548$ (8) \AA
$c=7.793$ (2) \AA
$\beta=97.273(5)^{\circ}$
$V=1831.0(9) \AA^{3}$
$Z=2$
$D_{x}=2.126 \mathrm{Mg} \mathrm{m}{ }^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 854
reflections
$\theta=2.8-26.2^{\circ}$
$\mu=4.06 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.20 \times 0.14 \times 0.12 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.468, T_{\text {max }}=0.610$
10493 measured reflections
3723 independent reflections
3242 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=26.4^{\circ}$
$h=-11 \rightarrow 11$
$k=-30 \rightarrow 31$
$l=-4 \rightarrow 9$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0272 P)^{2}\right. \\
\quad+2.202 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.002 \\
\Delta \rho_{\max }=0.47 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=
\end{array}-1.19 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right.$).

Eu1-O1	$2.342(3)$	Eu1-O7	$2.435(3)$
Eu1-O3	$2.392(3)$		
Eu1-O4	$2.428(3)$	Eu1-O8	$2.589(3)$
Eu1-O5	$2.347(3)$	Eu1-N1	$1.946(3)$
Eu1-O6	$2.409(3)$	$\mathrm{Cu} 1-\mathrm{O} 11$	$1.967(3)$
	$2.397(3)$	$\mathrm{Cu} 1-\mathrm{N} 2$	
$\mathrm{O} 11-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{iii}}$			

Symmetry codes: (i) $x+1, y, z$; (ii) $x+1,-y+\frac{3}{2}, z+\frac{1}{2}$; (iii) $-x+2,-y+2,-z+3$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 5-\mathrm{H} 5 A \cdots \mathrm{O} 2$	0.85	2.02	2.796 (4)	152
$\mathrm{O} 5-\mathrm{H} 5 B \cdots \mathrm{O} 10^{\text {iv }}$	0.85	1.99	2.795 (4)	159
$\mathrm{O} 6-\mathrm{H} 64 \cdots \mathrm{O} 10^{v}$	0.86	1.90	2.756 (4)	174
O6-H6B $\cdots \mathrm{O} 9^{\text {vi }}$	0.84	1.84	2.671 (4)	167
O7-H7A . . 09	0.85	1.83	2.666 (4)	169
$\mathrm{O} 7-\mathrm{H} 7 \mathrm{~B} \cdots \mathrm{O} 12^{\text {vii }}$	0.85	1.99	2.791 (5)	158
$\mathrm{O} 12-\mathrm{H} 12 A \cdots \mathrm{O} 1^{\text {viii }}$	0.85	2.17	3.019 (5)	174
$\mathrm{O} 12-\mathrm{H} 12 \mathrm{~B} \cdots \mathrm{O}^{\text {i }}$	0.85	2.06	2.888 (4)	164

Symmetry codes: (i) $x+1, y, z$; (iv) $-x+2,-y+2,-z+2$; (v) $x-1, y, z-1$; (vi)
$x, y, z-1$; (vii) $x, y, z+1$; (viii) $x,-y+\frac{3}{2}, z-\frac{1}{2}$.
H atoms were positioned geometrically and refined in the ridingmodel approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.85 \AA$. $U_{\text {iso }}(\mathrm{H})$ values were fixed at $1.2 U_{\text {eq }}$ (carrier). The deepest hole is located $1.42 \AA$ from atom H6B.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

metal-organic papers

The work was financially supported by the National Natural Science Foundation of China (NO. 50132010) and the 985 Program of Tsinghua University, China.

References

Bruker (1997). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Liang, Y. C., Cao, R., Su, W. P., Hong, M. C. \& Zhang, W. J. (2000). Angew. Chem. Int. Ed. 39, 3304-3307.
Liang, Y. C., Hong, M. C., Su, W. P., Cao, R. \& Zhang, W. J. (2001). Inorg. Chem. 40, 4574-4582.
Lisowski, J. \& Starynowicz, P. (1999). Inorg. Chem. 38, 1351-1355.

